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' Xilinx Research - Ireland vo Bolsens

CTO

» Since 13 years

> Part of the worldwide CTO organization (8 out of 36)
> Al Lab expansion part-financed through .“ IDA Ireland
» Increasingly external funding (H2020)) &

Kees Vissers
Fellow
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'Current Xlabs Dublin Team

> Yaman Umuroglu, Ken O’Brien, Nick Fraser, Giulio Gambardella, Alessandro
Pappalardo, Peter Ogden, Lucian Petrica, me (from left to right)
>> More faces to be added soon
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> Plus 2 in Xilinx University Program (Cathal McCabe, Katy Hurley)
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'Plus a Very Active Internship Program
®NTNU

> On average 4-6 interns at any given time Norwegian University of
. e Science and Technology
>> From top universities all over the world

Karlsruher Instltut fur Technologle

>> \We are always looking for talent ;-)

POLITECNICO s
> Qverall MILANO 1863 O

>> 67 Interns since 2007

>> Many found employment
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' Mission: Application-driven technology development
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> |dentify strategic applications

> Derisk emerging technologies

> |n partnership with universities, customers, and partners
> Current Focus:

Quantifying value proposition for FPGAs in Machine Learning
> Prototyping, testdriving, benchmarking
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New York Times: “The Great A.l. Awakening”

(Dec 2016)

Elon Musk’s Billion-Dollar Al Plan
Is About Far More Than Saving the World

World’s Largest He

d
Replace Managers wit ge Fund to

h an Al System

Drones Can Defeat Humans Using
Artificial Intelligence

Ll

FLONMUSK'S BILLION-DOLLARCRUSADE TOSTOPTHEAL, |-
APOCALYPSE

Elon Musk is famous for his futuristic gambles. but Silicon Vallev's latest rush to embrace artificial
intelligence scares him. And he thinks vou should be frightened too. Inside his efforts to influence th:
rapidly advancing field and its proponents. and to save humanity from machine-learning overlords.

BY MAUREEN DO @00

APRIL 2017
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Convolutional Neural Networks (CNNSs)

> CNNSs are the predominant ML algorithm used
>> Mimics the human brain
>> \Works very well for image classification, speech recognition

> NNs are the “universal approximation function”
>> |f you make it big enough and train it with enough data
>> Can outperform humans on specific tasks

> Requires zero domain expertise

> Will increasingly replace other algorithms
>> unless for example simple rules can describe the problem

> and solve previously unsolved problems
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'I\/Iachine Learning will help address the
Grand Engineering Challenges of the 21st Century (NAE)

>

>

>

>

>

Make solar energy economical
Reverse-engineer the human brain
Secure cyper space

Restore & improve urban
Infrastructure

Engineering better medicine

Advance health informatics

V-

NAE GRAND CHALLENGES Chalionges News
FOR ENGINEERING

V¥ %% %

Community

14 Grand Challenges
for Engineering in the
21st Century

Jeff Dean, Google @ Strata Data Conference, 2018

“I actually think machine learning is going to help with all of these,” the legendary computer
scientist said. “I think there are actually going to be significant breakthroughs in some of these
Grand Challenges that are at least in part fueled by the fact that we now have machine learning at
scale with many of these techniques that can really push us forward in the areas of commuter
vision, language understanding, speech recognition, and automating and solving engineering

problems.”

© Copyright 2018 Xilinx
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What iIs the

Challenge? %
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' Challenges

> Challenge 1:
> Although predominant CNN computation is simple linear algebra
> Huge amount of compute and memory is required
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'Example Inference

Input Image Neural Network Neural Network

I EE . cat?

For ResNet50:
70 layers
7.7 billion operations
25.5 Mbytes of weight storage*
10.1 Mbytes for tensors™

© Copyright 2018 Xilinx 8 XI I_INX
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'Training — 1 Image

| v

Input Image Neural Network Result Label

For ResNet50:
23 billion operations
weights, weight gradients, updates: 303Mbytes of storage (3-5x)
tensors, gradients: 80 Mbytes for tensors

*Assuming 32b SP © Copyright 2018 Xilinx 8 X”_lNX



'Training — 1.2 Million Images for 1 epoch

| v

Input Image Neural Network Result Label

Weight Weight Weight
Updates Updates Updates

1 epoch takes 1.2M * 23 Billion operations =23 10715
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'Training — 100 Epochs

GooglLeNet-1w-2a ImageNet256 accuracytops

| ¥
Input Image Neural Network Result Label
||
0.8 1
R J 0.6

0.2 1
0.0 1

For ResNet50: 100 * 23 10715 =2.3 10718

P40 GPU (12TFLOPS): 11days @ 100%, usually ~2 weeks

0

50000 100000 150000 200000 250000 300000

Numlters

For inference: Billions of operations, and 10s of megabytes
For training: Quintillions of operations, and 100s of megabytes

© Copyright 2018 Xilinx
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'On Crash course with End of Moore’s Law

Calculation of Cost Per Transistor by Node
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Source: IBS

> Compute performance is no longer scaling and becomes more expensive
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' Challenges

> Challenge 1.
>> Challenging compute and memory requirements

> Challenge 2:
>> Complicated design space
>> Huge variation in applications, requirements and design targets

Application: Image Classification Object 1etection Translation Recommendation

— T — 5

ImageNet COco Pascal VOC TIMIT Librispeech MovieLens-20M

1 1 ) !
J v v
Algorithm: AlexNet ResNet50 Yol¢V2 DeepSpech2
4 )
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102 AlphaGo

Gaming B 3D reconstruction from
. strate :
e ay drone images ‘
Service Real-time, y
A IIDat_af sensor-based- &
S nalysis 10 control -
Hearing Aids . Healthcare Medical

WATSON

-~ " Diagnoses

Brief history of IBM Watson

IBM Jeopardy!
Research Project  Grand Challenge
= Feb 2.

rdyy ~ Watson Watson
Il for
(2006 - ) [( 011) ealthcare ervices

FE & @
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Recognitiqn Recommender
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'CZ: Huge Variation in Memory and Compute

Compute and Memory Requirements
for Inference vs Training
2000.
1800.
1600.
1400.
1200.
O
E’ I nference Compute [GOPS]
2 1000
= : N Inference Memory [M Elements]
o
8 [ Training Compute [GOPS]
200. I Training Memory [MB]
== == Average Inference Compute [GOPS]
== == Average Infernce Memory [MB]
600. Average Training Compute [GOPS]
== == Ayerage Training Memory [MB]
400.
200.
0.
Networks
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'CZ: Different Use Cases, Different Design Targets

Accuracy, speed, power, latency, cost

> AR

> ADAS: > Hearing aids: -
>> Accuracy >> Low power >>

>> High throughput >> Very low latency >>

>> Low throughput

© Copyright 2018 Xilinx

_ > 3D reconstruction of
High throughput HR images

Low latency >> High throughput
Low power > Offline
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' Challenges

> Challenge 1.
>> Challenging compute and memory requirements

> Challenge 2:
>> Huge variation in applications, requirements and design targets

> Challenge 3:
>> Neural Networks Change @ Increasing Rate

© Copyright 2018 Xilinx 8 XI I_INX



'CB: Neural Networks Change @ Increasing Rate

> Graph connectivity, number and types of layers are changing

DenseNet (2016)

AlexNet (2012

- F=2 gyt GoogleNet (2014) @r
==aun Ce.

> Increasing stream of research 500 #Stat.MLPaperson AXIV_ 735,
1350
900
450

0 — —
2013 2014 2015 2016 2017

Ce Zhang, ETH Zurich, Systems Retreat 2018
© Copyright 2018 Xilinx 8 X”_INX



'Challenges in Summary

> Machine Learning is a very demanding use case,
compute and memory intensive
>> High variation

Application: | ppage Classification Object Detection Translation Recommendation
> Complicated design space J_T ﬂ J/_L$ TTL
>> Different applications T ImageNet = COCO = Pascal VOC TIMIT = Librispeech = MovieLens-20M
>> Different and changing algorithms T 1 T T —
>> Different figures of merits Algorithm: Alei/Net Resllll/etSO ) Deepi/pecm

Each Combination delivers different results
> Chan g In g req uirements regarding the design targets:

Throughput, power, latency, cost,...

> Need to be addressed through architectural and
algorithmic innovation

© Copyright 2018 Xilinx 8 XI I_INX



'Spectrum of New Architectures for Deep Learning

Exciting Times in Computer Architecture Research!

DPU: Deep Learning Processing Unit

TICICCIC
Customized ///////[[] HEE EE EB

. MSR Brainwave
macro-archltecture

/

X
B

Bismo

| | ] 2|
# ] 2| 2] 2]
|| 2| ] 2
| |2 2 ]
# | 2 2t | 2 |
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Soft DPUs Hard DPUs
CPUs GPUs
(FPGA) (ASIC)
mmmmE  TPU, Cerebras, Graphcore,
}Anlf/% %%%% AMD %%%% DeePhi Hﬁh%% Grog, Nervana, Wave
I NvVIDIA [l Teradeep LI Computing, Eyeriss,
ARM EEEE I [ Xdnn FEEEE Movidius, Kalray

m Stripes (bitserial ASIC),
Stanford, Leuven: BinarEye
= IBMs’ TrueNorth & latest Al
il accelerator

%222
#le|2]z]2
GOGEN
le]2]7]7]

— GEEOH

Customized,
Reduced precision arithmetic
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'Spectrum of New Architectures for Deep Learning
Efficiency vs Flexibility

HE NN NN Ne

MSR Brainwave

Bismo

][] ]2
2ol a]2]
elelels]e]
elelel=la
elelalals
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' Our Research Effort

> Changing neural network algorithm by reducing precision in data
types to provide performance scalability, compute efficiency
> Numerical representations, precision, quantization

> Customizing architecture to hit specific design targets
>> On micro and macro level

> Through automated tool flow (FINN) and open source platforms
(PYNQ and AWS) to provide ease of use

© Copyright 2018 Xilinx 8 XI I_INX



'Reducing Precision

Scales Performance & Reduces Memory

> Reducing precision shrinks LUT cost
>> |nstantiate 100x more compute within the same fabric

> Potential to reduce memory footprint
>> NN model can stay on-chip => no memory bottlenecks

Precision Modelsize [MB]
(ResNet50)
1b 3.2
8b 25.5
32b 102.5

© Copyright 2018 Xilinx

LUT Costs

2000
1800 |
1600 -
1400
1200 |
1000 |

800

600 [

T T
+  RTL Compression
— 1.1*C
XK HLS Compression

—— 1.6*C -

400

200

1 1 1 1
200 400 600 800
C - Complexity (Bit Products)

1
1000 1200

C= size of accumulator *

size of weight *
size of activation

& XILINX



' Reducing Precision provides Performance Scalability
Example: ResNet50, ResNet152 and TinyYolo

1000 = T T T v Ir I b T o
- VU9P Rooflines HEE 21 £ £4
HP x HP g8 € e} g
— - 8b x 8b alel e 2, g 2]
g__ 100 v Tx8b Sl £ &g L4
o E T x 4b slal o o o1
= T x 2b 5|%[ 9 g g
9 1b x 1b — HE1PS o= £
O 10 E et Ny i12-18 &8 F
G b q
E i 1 I:
£ — :
& 1k b E
0.1 i i i i i i i i i I i : : l :

1 10 100 1000 10000

Arithmetic Intensity [Op/Byte]

Theoretical Peak Performance for a VU9P with different Precision Operations

Assumptions: Application can fill device to 70% (fully parallelizable) 300MHZ Up to 100x
HLS overhead included
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Reduced Precision Inherently Saves Power

LSTM - Test Error vs Power(W) =
20 m [ECHNISCHE UNIVERSITA
0,2/2 o
18
— 16 e
§ 14 "Q Relative Energy Cost
) '-_ Operation: Energy (pJ)
7 ) 8b Add 0.03
t o
12 16b Add 0.05
e 32b Add 0.1
%, 16b FP Add 0.4
10 32b FP Add 0.9
u.., 8b Mult 0.2
P R I I I IR R JAnsansans o 32b Mult 3.1
0500 0.700 0.900 1.100 1.300 1.500 1.700 1.900 2.100 166 FP Mult 1
. . 32b FP Mult 3.7
Estimated Power Consumption [W] 320 SRAM Read (8KB) 5
® Bits (W/A) 32b DRAM Read 640 |
=== Pareto Optimal 1 10 100 1000 10000|
Target Device ZU7EV e Ambient temperature: 25 °C e 12.5% of toggle rate o Source: Bill Dally (Stanford), Cadence Embedded
0.5 of Static Probability ¢ Power reported for PL accelerated block only Neural Network Summit, February 1, 2017
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What are the downsides of

reduced precision? %
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' RPNNSs: Closing the Accuracy Gap

ImageNet Classification Top-5 Error over Time (ImageNet)
©0.00 » Float point improvements are slowing down
000 » Reduced precision highly competitive
» BNNs and TNNs are still rapidly improving <10% top5
40.00 =
S
= 30.00
20.00 G
10.00 U
0.00
06/07/2009 18/11/2010 01/04/2012 14/08/2013 27/12/2014 10/05/2016 22/09/2017 04/02/2019
Release Date
—8-BNN —@-CNN ® Reduced Precision Internal
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'Retraining:

From Floating Point to Reduced Precision NNs

| Input
TRAINING
S labels ResNet-50L ImageNet Top5 Error vs Hardware Cost
M b/5b
Q ol Jv? o 100.00 .'3
. = og 1
hm/ﬂ d, wose > = o -
oy OF S0 ' .
ey 70.00 ; Effect of Retraining
‘:::"/' Error s 60.00 |
- 5 5000 [
c — i I
Direct Quantization & ZZZZ |,4b/ Gb%b
Calibration I nput 1b/2b ! 1
, — \ oo RN | KRR 201800y WP/ _____Fioating point baseiie,
Retraining —'__N‘my' Suerie -
\ J Many 10.00 100.00 1000.00
‘ Model Hardware Cost (LUT + 100*DSP)
oFloat o Direct Quantization o Retrained
| Input
INFERENCE SN, _ _ _ _ _ N\
([ Quantized | « Direct quantization & calibration
‘h* H (L Model [ - o™ 4 - Deploying a different model to the one we trained
R G SN ..
LG S & . Works surprisingly well for 8b
\- <8bit: retraining helps a lot, but takes time Y
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' How to recuperate accuracy? imperial College

London

> Recuperate accuracy by increaSing o O\ Bthary —OINT2 A INT4 INTE —%—INT16 —O—FP32
network size X 0
14.00 A '
> Topological changes & 13.00
.. . : 12.00 -
> New training techniques £ WO
.. . £ -
>> Knowledge distillation = 1100 )
2 hS
10.00 - l‘_‘/ s O
9.00
1.0E+03 1.0E+04 1.0E+05 1.0E+06
Computation Resource
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y

Automating &

Customization %
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'FINN: Custom-Tailored Hardware Architectures

> Customized feed-forward dataflow
architecture to match network

topology

" s OUTPUT
R

»result

> Customized to meet design
requirements

> Customized data types (n-bit)

© Copyright 2018 Xilinx 8 XI I_INX



Automatically generated from CNN description

> Uses a synthesizable C++ NN description

> Enables flexibility & scalability and

supports portability, rapid exploration

theano Cafie
Synthesizable CNN Description / /_> <_/ . /

Design FINN synthesizer ZRIE (1057
void DoCompute (ap uint<64> * in, ap uint<64> * out) { targets y & parameters
#pragma HLS DATAFLOW

stream<ap uint<64> > memInStrm("memInStrm") ; v
stream<ap uint<64> > InStrm("InStrm"); th s bl C
- syninesizable C++
/ network description /
stream<ap uint<64> > memOutStrm("memOutStrm") ; FINN v
Mem2Stream<64, inBytesPadded>(in, memInStrm) ; hardware Vivado HLx
StreamingMatrixVector<L0O STMD, L0 PE, 16, LO Mw, LO MH, LO WMEM, LO TMEM> ||brary

(InStrm, inter0, weightMem(O, thresMemO) ;
StreamingMatrixVector<Ll SIMD, L1 PE, 16, L1 MW, L1 MH, L1 WMEM, L1 TMEM>
(inter0, interl, weightMeml, thresMeml) ; / bitfile /
StreamingMatrixVector<LZ SIMD, L2 PE, 16, LZ MW, L2 MH, L2 WMEM, LZ TMEM>
(interl, inter2, weightMem?, thresMem?2?) ;

StreamingMatrixVector<L3 STMD, L3 PE, 16, L3 MW, L3 MH, L3 WMEM, L3 TMEM> Runtlme Y
(inter?, outstream, weightMem3, thresMem3) ; ) FINN
StreamingCast<ap uint<16é>, ap uint<64> >(outstream, memOutStrm) ; (T'nydnn, —] platform with FPGA < software I_brary
Stream?Mem<64, outBytesPadded>(memOutStrm, out): "W I
X DarkNet)
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XILINX
VIRTEX.

Ldicues™

xcvues®

............
255504
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Platforms — From Embedded to Cloud
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'Numerous Platforms

plane car  bird cat deer dog frog horse ship truck
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'Numerous Test Networks

> Multilayer Perceptron (1b weights, 1b act), MNIST
>> Up to 5.8MOPS/frame

> VGG-16 derivative (1b weights, 1b act), SVHN, CIFAR-10, traffic
signs, playing cards)
>> Up to 1.2GOPS/frame

> DorefaNet — AlexNet derivative (mostly 1b weights, 2b act)
(ImageNet)

> Upto 3.9GOPS/frame

> YoloV2, Yolo9000, TinyYolo (1b weights, 8b act) (VOC, COCO)
>> 34.9, 19 and 7.0GOPS/frame

e
> LSTM, for OCR on Fraktur I -

m  [ECHNISCHE UNIVERSITAT
m KAISERSLAUTERN
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'Design Trade-offs with Reduced Precision NNs

ImageNet Classification Top5% vs Compute Cost f(LUT,DSP)

Recommender
systems

25.00

_20.00

Applications
Val. Error (%
o
o
o

10.00

5.00 ————

Automotive

(v aviv)

1.0 10.0 100.0

D000.0 10000000.0 100000000.0 1000000000.0

~

100000 100000.0
Compute Cost (LUTs + 100*DSPs)

1000.0

ZU2EG
/US5EG

To reduce cost / resources
To stay onchip

Devices  To save power

« To scale performance
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Y
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'FINN Results

> Performance

>> VOC Obiject recognition: Quantized TinyYolo @ 55fps @ 7Watt (batch=1) for embedded (ZU3EG)
>> |ImageNet Classification: Dorefanet @ 11 TOPS on AWS F1 instance

>> Scaled binary operations to 51TOPS on AWS F1 and 5.2 TOPS on ZU3EG & 1000x over
Raspberry Pi

> Energy efficiency: measured 433GOPS/Watt

> Flexibility & Scalability

>> Different platforms can easily be targeted from embedded to cloud
>> Different use cases, networks & training data sets

> While being sufficiently accurate
>> <10% top5 for ImageNet classification
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'Summary

> ML has the potential to address many of the grand engineering challenges of this
century

> However, compute & memory requirements are huge and flexibility and scalability
are key

> New, customized computer architecture are emerging

> FPGASs can play an important role here, in particular in conjunction with reduced
precision and customized macro architectures
>> QOrders of magnitude improvement in performance, resources and power consumption
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' Exciting Times for our Community:
Finding Optimal Solutions within a Complex Design Space

Application:

Dataset:

Algorithm:

Hardware:

Implementation:

Image Classification Object Detection

)
v v

Translation Recommendation

1

v

v

T_¢

ImageNet COCO Pascal VOC TIMIT Librispeech MovieLens-20M

1 1 1 i\ &

v \’ v

AlexNet ResNet50 YoloV2 DeepSpech2
T 0\ A
FPGAS GPUs TPUs CHUs FPGAs GPUs CPUs Custom
A A A A A A
Limam 1

Inal Each Combination delivers different

© Copyright 2018 Xilinx

results regarding the design targets:
Throughput, power, latency, cost,...

& XILINX



1 Architecture Exploration
* Help understand the choices!
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Adaptable.

XILINX.

ICCD 2017: Scaling Neural Network Performance through Customized Hardware Architectures on
Reconfigurable Logic

H2RC 2016: A C++ Library for Rapid Exploration of Binary Neural Networks on Reconfigurable Logic

ICONIP’2017: Compressing Low Precision Deep Neural Networks Using Sparsity-Induced Regularization in
Ternary Networks

CVPR’2018: SYQ: Learning Symmetric Quantization For Efficient Deep Neural Networks
DATE 2018: Inference of quantized neural networks on heterogeneous all-programmable devices

ARC’2018: Accuracy Throughput Tradeoffs for Reduced Precision Neural Networks


https://arxiv.org/abs/1612.07119
https://arxiv.org/abs/1701.03400
https://ieeexplore.ieee.org/abstract/document/8119246/
https://h2rc.cse.sc.edu/2016/papers/paper_25.pdf
https://arxiv.org/abs/1709.06262
https://ieeexplore.ieee.org/abstract/document/8342121/

